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ABSTRACT

Conventional federated learning (FL) aims to train a unified machine learning
model that fits data distributed across various agents. However, statistical hetero-
geneity arising from diverse data resources renders the single global model trained
by FL ineffective for all clients. Personalized federated learning (pFL) has been
proposed to primarily address this challenge by tailoring individualized models
to each client’s specific dataset while integrating global information during fea-
ture aggregation. Achieving efficient pFL necessitates the accurate estimation of
global feature information across all the training data. Nonetheless, balancing the
personalization of individual models with the global consensus of feature infor-
mation remains a significant challenge in existing approaches. In this paper, we
propose pFedVMP, a novel pFL approach that employs variational message pass-
ing (VMP) to design feature aggregation protocols. By leveraging the mean and
covariance, pFedVMP yields more precise estimates of the distributions of model
parameters and global feature centroids. Additionally, pFedVMP is effective in
boosting training accuracy and preventing overfitting by regularizing local train-
ing with global feature centroids. Extensive experiments on heterogeneous data
conditions demonstrate that pFedVMP surpasses state-of-the-art methods in both
effectiveness and fairness.

1 INTRODUCTION

Federated learning (FL) is a promising distributed learning paradigm that enables clients to collab-
oratively train models without uploading private data, thereby protecting local data privacy (McMa-
han et al.| 2017). In the standard FL framework, clients train a uniform learning model using local
datasets and employ linear model aggregation to combine these local models, assuming that while
the local data across clients may differ in size, they generally share similar underlying distributions.
This assumption potentially leads to a global model that performs reasonably well when deployed
on each client. However, in practice, local data distributions vary due to diverse sources and data
quality, resulting in a phenomenon known as statistical heterogeneity of training data (Zhao et al.,
2018)). This heterogeneity makes the globally optimal model perform poorly on local datasets.

Personalized federated learning (pFL) has been introduced to address the challenge of statistical het-
erogeneity by training personalized models that better align with each client’s local dataset, rather
than relying on a single global model. This is accomplished through an iterative process that al-
ternates between two key steps: (1) Aggregating shared feature information from local models to
capture the underlying patterns present across local datasets, and (2) Developing tailored models for
clients to meet their specific objectives by leveraging the aggregated global information. Existing
work often concentrates exclusively on either personalized feature information (e.g., FedPer (Ari-
vazhagan et al.| 2019), FedPep (Collins et al.l [2021)) or global feature aggregation (e.g., FedROD
(Chen & Chaol [2022)). This leads to neglect of balancing personalization and global consistency.
To address this issue, several pFL approaches incorporate global information to improve local fea-
ture extraction. For example, FedProto (Tan et al., [2022) and FedPAC (Xu et al., [2023) align local
feature representations closely with their respective centroids, where the global centroids are esti-
mated by averaging the feature samples. However, due to statistical heterogeneity of training data,
the arithmetic mean of feature samples deviates from the ground-truth centroids (Al-Shedivat et al.,
2021} |Guo et al. 2023)), which in turn might degrade the accuracy of local feature extraction. To
tackle this challenge, Bayesian estimation methods have been adopted in FL. For example, FedPA
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(Al-Shedivat et al.| 2021)) and FedEP (Guo et al.| [2023) design model aggregation protocols based
on Bayesian principles. By leveraging the mean and covariance of model parameters, these methods
achieve more accurate estimate of the global model.

In this paper, we propose a pFL approach, termed pFedVMP, which leverages a variational message
passing approach for feature aggregation. This method conceptualizes both model parameters and
feature centroids as random variables and aggregates their distributions via a maximum-a-posteriori
(MAP) criterion to update the global model. To simplify the MAP estimation, we utilize variational
inference to decompose the joint density distribution of the variables using multiplicative factors.
By leveraging the mean and covariance, the variational message passing rules yield more precise
estimates of the distributions of model parameters and global feature centroids. Furthermore, the
variational message passing algorithm yields a model update rule that aligns with a regularized local
optimization framework, utilizing global feature centroids to enhance personalized model training.
This approach is validated as effective in improving training accuracy and preventing overfitting.
The key contributions are summarized as follows:

* We develop a unified probabilistic framework that integrates both model parameters and feature
centroids, proposing a pFL approach based on variational message passing, termed pFedVMP, to
address statistical data heterogeneity.

» pFedVMP provides more precise estimates of the distributions of model parameters and global fea-
ture centroids by utilizing the means and covariances. This approach achieves a balance between
global feature estimation and local model personalization in pFL.

* We perform extensive experiments under various data heterogeneity settings. The results demon-
strate that pFedVMP outperforms state-of-the-art methods in terms of both effectiveness and fair-
ness.

2 RELATED WORK

FL under statistical heterogeneity of data. The FL framework was initially proposed by McMa-
han et al.| (2017). Subsequent studies, such as those by (Khaled et al.| [2020; |[Zhao et al., |2018)),
have underscored the significant impact of statistical heterogeneity in training data on the conver-
gence rate and learning accuracy of FL models. This challenge has continuously drawn attention
in the research community. Various strategies have been proposed to address this issue, including
regularized local training using global information (Li et al., 2020; |Durmus et al., 2021} L1 et al.,
2021al), local bias correction (Karimireddy et al.l [2020), data augmentation (Li et al., 2022} [Yoon
et al.,[2021)), and knowledge distillation (Zhu et al., 2021; Lin et al., | 2020).

The drive to address statistical heterogeneity has significantly shaped the development of pFL ap-
proaches, which train localized models tailored to diverse local data distributions (Dati et al., |2023
Zhang et al., |2023a; [[slam et al., |2024; Hanzely & Richtarik} [2020). Initial pFL strategies typi-
cally involved a straightforward extension of linear model aggregation similar to conventional FL
(Deng et al.,[2020; Hanzely & Richtarik, [2020). Since then, more sophisticated pFL protocols have
emerged, drawing inspiration from advanced learning mechanisms, such as meta-learning (Fallah
et al., [2020; |Chen et al., [2018])), multi-task learning (Smith et al., 2017; T Dinh et al., [2020; L1 et al.
2021b), and model splitting strategies (Arivazhagan et al.,[2019; Collins et al.| 2021}, |Chen & Chao,
2022; Liang et al., 2020; Oh et al., [2022} Zhang et al.l 2023b). While these approaches have im-
proved the performance on the heterogeneous data, they may still be prone to overfitting, particularly
when the training dataset size is small (Zhang et al.,|2023d}a)).

Federated Representation Learning. Several pFL approaches, such as FedSR(Nguyen et al.,
2022), FedCiR(Li et al.| |2024), FedProto(Tan et al., [2022), MOON(Li et al., |2021a)), FedCP(Zhang
et al., 2023c), FedPAC(Xu et al., 2023), and GPFL(Zhang et al., 2023a), integrated representation
learning by learning a client-invariant representation. This representation maintains a consistent con-
ditional distribution across clients and is leveraged in local training as a foundation model, which is
shown effective in preventing overfitting. Specifically, FedSR and FedCiR computed global feature
distributions by using probabilistic networks and generative networks, respectively, which are not
directly applicable to pFL. In contrast, FedProto and FedPAC estimated the mean of global feature
distributions by averaging local feature samples. MOON aligns the local and global representations
by maximizing their similarity. GPFL embedded features in a representation space and subsequently
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Figure 1: Schematic view of pFedVMP.

estimated global feature distributions implicitly with the embedding dictionary. In contrast, pFed-
VMP leverages the covariance estimates of feature representations in aggregation, subsequently
leading to a more robust estimation of the base model.

Bayesian Federated Learning. Bayesian federated learning (BFL) was proposed to improve the
robustness and learning performance, particularly on small-scale datasets (Cao et al.l [2023). BFL
can be broadly categorized into client-side BFL and server-side BFL based on federated learning
architectures. Client-side BFL focuses on learning Bayesian local models on client nodes, includ-
ing BNFed (Yurochkin et al., 2019), pFedGP (Achituve et al.| 2021}, and pFedBayes (Zhang et al.,
2023d). Specifically, BNFed and pFedGP train Bayesian nonparametric models, while pFedBayes
trains Bayesian neural networks. In contrast, server-side BFL aggregates local updates for global
models using Bayesian methods, including FedPA (Al-Shedivat et all 2021}, FedEP (Guo et al.,
2023), QLSD (Vono et al., [2022)), pFedBreD (Shi et al., [2024). This branch of methods formulates
model training as model inference tasks and computes the maximum-a-posterior (MAP) estimator
(Al-Shedivat et al.|, 202 1;|Guo et al.| 2023} Vono et al.,|2022)). In the FL setups, the distributed nature
of datasets among clients prevents direct computation of model posterior distributions. FedPA ap-
proximated the posterior distribution into the product of distributions with respect to local datasets
during local model training. FedEP developed the Bayesian model aggregation rule by using expec-
tation propagation. QLSD extended the approach in FedPA with the quantized Langevin stochastic
dynamics for local update. pFedBreD incorporates personalized prior knowledge for meta-learning.
However, the above BFL methods do not utilize global feature centroids to guide local model train-
ing, which limits their ability to effectively address data heterogeneity. In contrast, pPFedVMP con-
siders both model parameters and feature centroids, guiding local training through a regularization
term based on global feature centroids, thereby enhancing learning performance.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider an FL system to train a supervised classification model under the coordination of a
parameter server (PS) and N clients. Each client n owns its local dataset S,, with |S,,| = S, labeled
data points. The i-th data point in S,, is denoted by (xy, ;, yn.;), Where x,, ; denotes the data sample,

and y, ; € {1,---, K} denotes the label of x,, ;. LetS = Ufj:l S,, denote the collection of the
training data from all the clients, which is assumed to be categorized into K classes and the data in
each class is independent identically distributed (i.i.d.) from an unknown distribution. We denote
the overall data distribution as a mixture distribution pp(x,y). We assume that the data size of each
label class at each client is known at the PS beforehand.

In practice, data heterogeneity across clients results in heterogeneous statistics of local data, includ-
ing their means, variances, etc. This discrepancy leads to distinct marginal distributions for local
datasets, presenting a challenge known as the statistical heterogeneity of training data (Zhao et al.,
2018} [Arivazhagan et al.| 2019; [Tan et al., |2022)). Such heterogeneity invalidates the common 1i.i.d.
data assumption in the machine learning literature, arising challenges in model bias and overfitting.

In this work, we employ pFL to address the challenge of statistical heterogeneity. Instead of training
a uniform global model that tries to fit all the local datasets, pFL aims to train personalized models
tailored to each client’s individual dataset. As shown in Fig.[I] the clients share a common base
model to extract global feature representations and learn a personalized head model to enhance
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performance on their local datasets. Specifically, on any client n, its local network can be divided
into two parts: 1) a base model v parameterized by ® to extract the feature Zy,; corresponding to
the input data sample x,, ;, given by z,, ; = ¥(x,.i,0); 2) a head model ¢ parameterized by 0"
to map the feature z,, ; to the label §,, ;, given by gy, ; = ¢(2n i, On) Given a base model specified
by the parameter 8, the collection of feature samples with respect to (w.r.t.) the n-th training
dataset S, is denoted by Z,, = {(Zn.i, Yni);i = 1,..., S, }, where z,, ; = (X, 4, O) is the i-th
feature sample on client n, and the local dataset S,,. As the training data encompasses K classes,
we can categorize the corresponding features based on the class of the input data, represented as

Z, = U k1 Zkn> Where Zp. ,, = {(2y,, k)} denotes the set of feature samples corresponding to
class k. Let Z, and Zkn denote the total number of features in Z,, and the number of features in
each class subset Zj, ,,, respectively. Let z; denote the global centroid of the features of class k,
and zy, , denote the local centroid of the features of class k on client n. Due to the heterogeneous
and non-shareable nature of local data in the FL setting, the local base model tends to overfit the
local data, causing the local feature centroid zy,, to diverge from the global feature centroid zj, and
resulting in poor performance on subsequent classification tasks.

Before introducing the proposed approach, we formulate the distributed optimization problem for
the pFL system. Following the Bayesian FL problem formulation (Al-Shedivat et al.l 2021} |Guo
et al., [2023), we model the parameters 8>, {07} and the global feature centroids {z;} as random
variables. Our goal is to solve a maximum a posteriori probability (MAP) estimation problem w.r.t.
the variables (6°, {62}, {z..}), given by

p(@b,{02}7{zk}|8), (D

max
6>.{65}{zx}

In general, performing exact inference on the distribution p(6®, {81}, {2, }|S) is intractable due to
the high dimensionality of the variables and the unshared nature of the local datasets.

4 PROPOSED FRAMEWORK

In the following sections, we introduce approximate inference to simplify the optimization process
and propose a new approach, termed personalized Federated Learining via Variational Massage
Passing (pFedVMP), for efficient feature aggregation. Motivated by variational inference (Minkal,
2001), we use a decomposable surrogate distribution ¢(, {8"}, {z;}) to approximate the distribu-
tion p. Specifically, we convert the original problem in eq. (1)) as follows:

(Pl) q(Bb,{Igg?{zk}) DKL(p(eba {02}, {Zk}|8) Hq(ab) {01};}5 {Zk}))’ (2)

where Dkr,(||-) denotes the KL-divergence. The chosen surrogate distribution q(6®, {8"}, {z;})
is required to admit a decomposable form as:

(6", {6,}. {zx}) o< a(8")q({0,;})a({zr}), 3)

where ¢(6), ¢({6"}), q({z1.}) denote the global factors for the base parameters 8®, the head pa-
rameters 6,., and the feature centroids {z }, respectively. These marginal distribution can be fur-
ther factorized as the products of prior and local likelihood distributions as

N
Q(Hb)O(Qpri<6b)an(0b Oh O(qurl qn Bh ({Zk} X Gpri {Zk}’ an {Zk:} (4)

n=1 n=1

where qpl.i(Ob) qpn(an) qpri({zr}) denote the prior factors for 8, 6%, and {z}, respectively;
and ¢,,(0), ¢,,(61), ¢ ({z1}) denote the local likelihood factors with given the local dataset S,, on
client n for 0 Oﬁ

and {zy }, respectively.

As shown in Fig. [T} in each training iteration the client share the local information on the base pa-
rameters O and the feature centroids {z} to the server for aggregation, while kee ping the head
parameters {0"} local. Specifically, the clients and the PS update the factors in eq. (3) and eq. ( .
corporately to find the optimal (8°, {62}, {z;}) that maximize the objective in (P1). In the follow-
ing, we shall detail the concrete updating expressions for specific choices of the distributions.
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4.1 VARIATIONAL INFERENCE

We first discuss the factors for the model parameters 8, 8%, Following previous works on vari-
ational inference (Minkal 2001; |Al-Shedivat et al., 2021} |Guo et al.l 2023), we use the mul-
tivariate Gaussian distribution as the variational family for the factors w.r.t. 6 6%, given by
0pri(0°) = N (g (AZ)™1): 4n(0°) = N(up, (AD)7Y). apni(07) = N(ppy. (Aps) ™),
QH(B?L) = N(IJ’}%7(A2)_1)’ where (ngivAEri)’ (N27A2)’ (I“l’gri’Agri)’ (N}TIHA’EIL) denote the
mean vectors and the precision matrices of the factors gp:i(0), ¢n(0°), qpri(0L), . (61), re-
spectively. We assume that the head parameters {#"} share the same prior distribution between
the clients. Since the model parameters has high dimensions, we formulate the precision matrices

(Agri7 AP, Agri, A) as diagonal matrices to reduce the computation complexity.

We now discuss the factors for the feature centroids {z}. Following the works in representation
learning (Yin et al., 2020), we use the Gaussian mixture (GM) distribution as the variational family
for the factor related to the feature centroids {zy }. Specifically, for g, ({zx}), we have

ez =Y allzd ) =Y

where g, (y) is the weight of the k-th component satisfying Z,If:l gn(yr) = 1, representing the
probability of the data belonging to class k on client n, and ¢, (z) is a multivariate Gaussian
distribution, given by gn(zx) = N (., (Ai,n)*l) with a mean pf , and a precision matrix
A7 .- The prior distribution g,i({zx}) is also set as a GM distribution, given by qpri({zx}) =

K

ey DY) an (21), (5)

% Z,ﬁ{:l pri(Zx), where the distribution of each component ¢,,i(zy) is a unit Gaussian distribu-
tion, 1.e., gpri(zx) = N(0,I). In eq. , we see that the global factor ¢(zy) is a product of the
local factors gy, (zy) and the prior gp.i(zx), i.e., a product of N + 1 GM distributions, involving
computing K V! Gaussian components, leading an unbearable computation complexity. Thus, we
turn to combine the components for each class k separately, resulting in an aggregation of multiple
Gaussian distributions for each class k. The details are discussed in Section 4.3.

4.2 LOCAL OPTIMIZATION PROBLEM

Based on the previous discussions on the factorization of the approximation distribution g, we
are now ready to present the local optimization problem for each client. Let g, (6,0 {z;})
7(0°)q,(0")q, ({21 }) denote the local factor for client n, and define the cavity factors of °, 62

{zx} as o
o> or z
o gy ) < L ©

b h
q-n(0”) x yq—n({0p}) ox .
We further express the distribution ¢q(6°, {02}, {z;}) as q(6° {62}, {zx})
4n(0°,0" {21.})q—n(0°)q—r,({Zx })q—n(62). On client n, by fixing the cavity factors g_,,(6°),
q-n({62}), ¢_n({z1}), we have the following local problem for client n:

(P2) qn(gbr}%in{zk})DKL (p(0b7 {02}7 {Zk}‘S)HQn(gbv 027 {Zk})Q—n(ab)Q—n({Zk})Q—n({gg}))a
(7)

where p is the joint distribution defined in eq. (I). In general, with given the cavity distribution g_,,
client n aims to find an optimal distribution g,, to minimize the local objective in eq. (7). The PS
then aggregates the updated factors {q,, } and obtains the estimate of (8°, 8", {z;}) by solving (P1).

y Yno

In practice, the statistical property of the local dataset S,, are different, leading to the issue of sta-
tistical heterogeneity. Statistical heterogeneity causes biased local estimation of (8, 8", {z;.}) in
clients, which requires a more efficient algorithm to aggregate the information of clients and obtain
a more robust estimate of (6°, 82, {z;.}) for the global dataset S. To this end, we propose pFedVMP
to solve the optimization problems in (P1) and (P2).

4.3 PFEDVMP

We introduce pFedVMP by first presenting the local inference on clients, followed by the global
aggregation at the PS.



Under review as a conference paper at ICLR 2025

4.3.1 LOCAL INFERENCE

To solve the local problem in eq. (7), client n estimates the local factor g, (6%, 8%, {z;.}), or the
factors ¢, (%), ¢, (02), ¢.({z1}). We alternatively update the factors of model parameters q,, (6"),
¢, (0%) and the factor of feature centroids ¢, ({zx}) . Specifically, we update the factors of model
parameters ¢, (8°), ¢, (81) by fixing ¢,,({z}) first. Based on the updated factor ¢, (8), we obtain

the set of local feature samples Z,,, and update the factor of feature centroid ¢, ({21 }).

Updates the factors ¢,,(6") and g,,(6") Given the problem in (P2), since client n only has a local
dataset S,,, it is difficult to sample the joint distribution p directly. Thus, on client n, by fixing the
cavity factors, we define a surrogate distribution ¢,, to approximate the joint distribution p. The local
optimization problem in eq. (7)) is converted to

(P3)  min Dxw (G:(0.05 {21:}) 140 (6", 0, {21:})q-1(6")q-n ({21 }) g1 ({6,}))

Gn (0" 81 {21 })
(8a)
s.t. én(Ob,927{Zk}):p(SnIOb,GZ)qn({zk})q_n(Ob)q—n({Zk})q_n({OE})(éb)

We now introduce the updates of the factors g, (0") and ¢, (8"). To solve the problem in (P3),
stochastic gradient Markov Chain Monte Carlo (SG-MCMC) is a widely used algorithm to draw
samples of °, O from the distribution G, (6°,0% {z;}) (Al-Shedivat et al., 2021; /Guo et al., 2023).
However, it requires a sufficient number of samples to achieve the factors ¢, (6") and ¢, (6;}) that
approximates the distributions G, well. This costs an unbearable computational complexity on the
client side, and leads to extra communication overhead to upload the covariance matrices of the
model parameters 8. Thus, we use the traditional SGD method to update the factors g, (6") and
¢, (81). The traditional SGD method can be seen as a low-cost implementation of SG-MCMC since
the results of 8°, 8" updated by SGD can be regarded as a single sample drawn by SG-MCMC,
which reduces the computational and storage cost in the sampling.

Specifically, by taking logarithm on eq. and drop the terms unrelated to (62, 8%), we minimize
the following loss function via SGD:

S (- 102p0001, v 167 60)+ i, 7 ©
i=1 gp n,'myn,z yUn 1|4n,: l"’yn,z )

where uzm denotes the mean of features in class ¥y, ;, Z, ; is the feature corresponding to the data
sample x,, ;, and &; is a penalty scaler. (The detailed derivation from eq. to eq. @]) is provided
in Appendix [A]) Assuming that SGD is performed for the B,, steps on client n, we update the mean
and the covariance matrix of ¢,,(8) and ¢, (8") by

Sn Sn
by = 05(P0) AL = 2T and uf = 05, Al = S, 10
where BE(B") and 02(]3") denote the base model parameter and the head model parameter obtained
by client n after B,, steps. We set the covariance matrix as a scaled diagonal matrix proportioned to
the size of local datasets for a low implementation cost.

Updates the factor ¢, ({z; }) We now discuss the factor of the feature centroids {2z, }. Based on the
GM model defined in eq. , the distribution ¢, (zy) for the k-th class is a Gaussian distribution.
Thus, for the feature centroid of class k, i.e., z,; € Z », the messages of the distribution qn(Zk)
are estimated by maximize the likelihood of {z; } with given the based model parameter ® (i.e., the
mean 1P) and the local data set S,,, given by

Z,n

1
max 2148, 0°) =i = — ) 7, AL = (2% ) +alVE e [K], (11)
{(“Z”’L’Am}p({ K} ) = Him Z]m; i A = (B%0) (K]

z .
where 3} | = ﬁmzi:’“‘l" (22— o) (22 s — i) T () denotes the Moore-Penrose inverse, and

a > 0 is a hyper-parameter to ensure that the precision matrix A7 , is full rank.

4.3.2 GLOBAL AGGREGATION

As discussed in Section 3, precise global feature centroids helps to prevent the models from over-
fitting to local data. Consequently, global aggregation at the PS involves aggregating both the base
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model parameters, 6", and the local feature centroids, zx, from the clients. In this subsection, we
introduce the distribution aggregation at the PS.

We first introduce the message aggregation of the base model parameters. Let ¢(6°) =
Gori(6°) TT2_, ¢, (8°) denote the aggregated distribution of ¢(6). Due to the Gaussian factors
@pri (6°), and g, (0), the aggregated distribution ¢(6®) is also a Gaussian distribution. Based on
the product principle of Gaussian distributions, the aggregated messages of () are given by

AP = Zivzl AP, and pb = (Ab)*l(zll Ag,ﬁ;). (12)

We now discuss the message aggregation of the feature centroids zj. In the context of supervised
learning, the feature centroid z; corresponds to class k. We assume that the class information
of the feature centroids {z;} is known at the PS beforehand. Thus, the aggregation of ¢, (zy) is
performed on each class k separately, resulting in an aggregation of multiple Gaussian distributions
for each class k. Specifically, the global distribution of feature centroids ¢(zy) is given by ¢({zx}) =

Z,[le q(yx)q(zr), where g(yy) is the component coefficient for class k, and ¢(zy,) is the distribution
of the feature centroid zj, in class k. Based on the product principle of Gaussian distributions, for
each class k, the mean and the precision matrix of ¢(zy) are given by

N N
P> A and g = (AD (YD ALLHE) (13)

As for the component coefficient g(yy ), based on the assumption that the PS knows the statistical

N
properties of local datasets, the component coefficient ¢(yy) is estimated by g(y) = ZL:%
We note that since each factor of distribution ¢(@®, {6}, {z;}) is either Gaussian distribution or
GM distribution, the MAP estimate is taking the mean of each Gaussian distribution (or each Gaus-
sian component of the GM distribution), i.e., uf, {ph }, {p7,}. We summarize the proposed pFed-
VMP in Algorithm

Algorithm 1 pFedvMpP Algorithm 2 LocalInfer
Input: Local datasets {S,, } Input: ¢(6°,{6%}, {z})
1: forround £ = 1,. -I;,T (}30 ) 1: Update (u2; u) with performing SGD on the
2 Broadcast‘q(e ,{0n1, {zk}) to clients. loss function in eq. ©);
3: for each 1Shent n he [N] in parallel do 2: Update {(p% ., =%.,,)} via eq.
4: 4n(07),4n(0n), {qn(2x)} Output: ¢,,(6"), ¢, ("), {gn(zx)}
< LocalInfer(q(@®, {08}, {zx}))
5: end for Algorithm 3 G1lobalAgg
6: Collect ¢, (0®) and {qy(zx)} from clients. n
7 q(6°, {6}, {z}) Input: {g.(0 )}; {qﬁ (z1)}
 Glopalagg({an (6"}, fan(ze)hy L Compute (), A viaeq. {12 .
8: end for 2: Compute (u}, A7) viaeq. (13) for Vk € [K];
Output: py, {ph}, {pi} Output: ¢(6";n;, Ap). and g({zx}; {per, =i })

5 NUMERICAL EXPERIMENT

5.1 SETUP

Baselines, datasets and backbones. We compare the performance of pFedVMP with the following
state-of-the-art pFL algorithms: FedAvg-FT where the global model is fine-tuned locally on each
client; FedRep, FedPer, FedROD; FedProto, MOON, FedCP, GPFL, FedPAC; FedPA-FT, FedEP-
FT, QLSD-FT, pFedGP, pFedBreD. The hyperparameters of the baselines are set according to the
original papers. We use a 4-layer convolution neural network for FMNIST (Xiao et al., |2017),
EMNIST (Cohen et al., 2017), and Cifar10/Cifar100 (Krizhevsky et al., |2009). The details of the
CNN architecture are presented in Appendix

Data heterogeneous settings. Based on the above datasets, followingLin et al.[(2020), we consider
the following data heterogeneous setting: Let gy ,, = ZS"—; denote the proportion of data samples
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from class & allocated to client n, and let Qi = [gx 1, - - - , gk, ;] denote the proportion values for class

k across all clients. Naturally, ZnN:1 gk,n = 1. For each class k, the entries of qy, are sampled from
a Dirichlet distribution, denoted by Dir(/3), where (3 is the parameter of the Dirichlet distribution. A
small /3 leads to a greater concentration of data from the same class in a few clients.

Implementation details. We consider a scenario that all clients participate in FL training. On each
client, the local dataset is divided into 80% for training and 20% for testing. We set o« = 1. A
total of 1000 communication rounds are conducted between the PS and clients, with one local epoch
per round. The SGD optimizer is used to update both the base model and the head models, with a
learning rate of 0.01 and a batch size of 10. We report the mean values across three trials.

5.2 RESULTS
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Figure 2: The t-SNE visualization results of feature vectors obtained by pFedVMP and other FL.
algorithms. We consider 50 clients on Cifarl0. The test accuracy is reported behind each subtitle.

Learned Features. We first visualize the feature samples. We train 50 clients on the CIFAR-10
dataset, partitioning each class of data among the clients according to Dir(0.3). In Fig. 2} we plot
the low-dimensional representation of the high-dimensional features using t-SNE (Van der Maaten &
Hintonl 2008]), where each color represents a class, and each point corresponds to a feature sample.
Due to the limited data available to each client, a base model overfitting to local data will project the
data in the same class into distinct clusters. In contrast, a base model with stronger generalization
tends to project data within the same class into a single cluster, as modeled by the GM model in
eq. @ Moreover, the more distinct the data from different classes, the easier it becomes to learn
robust personal classifier heads. From Fig. fa), we see that the base model learned by FedPer
projects the data into the same cluster, resulting in a poor classification performance. By adding
the constraints to the output features, GPFL, FedPAC, and pFedVMP achieves better values of test
accuracy. Although GPFL discriminates the features of data from different classes, the features from
different clients exhibit greater divergence and form some stragglers from the centroid, indicating
that the base model in GPFL overfits the local data. Compared to pFedVMP, the boundary of the
features from different classes obtained by FedPAC are not discriminative to each other, resulting
in worse performance. This is because the feature centroid aggregation method used in FedPAC is
based on weighted average, leading to a larger covariance of the features within each class. As shown
in Fig. 2d, features within the same class are closely grouped and tend to form a hyper-oval shape,
distancing themselves from other classes, which validates the GM model in eq. (3). This result
demonstrates that pFedVMP achieves a better balance between generalization and personalization.

Effectiveness. We now compare pFedVMP with other SOTA baselines. We report the test ac-
curacy values averaged on the clients obtained by the algorithms in Table [l We also plot the
average test accuracy and training loss of various pFL algorithms in Fig[I] The average test ac-
N AS
%Z": A
denotes the number of correct classified data on client n. Here, we consider two data partition
settings, Dir(0.1) and Dir(0.3), where data samples are more concentrated on a few clients in
Dir(0.1), and the local data for each client come from more classes in Dir(0.3). As shown in
Table [T] and Fig [3] pFedVMP achieves the highest test accuracy in the various settings, demon-
strating the superior performance of pFedVMP. Next, we explain the reasons for the superior per-
formance of pFedVMP over other baseline methods based on the experimental results. (1) pFed-
VMP v.s. FedAvg-FT: FedAvg-FT forces the model on each client aligned to the global model
at the PS, which prevents the model from overfitting the local data and results in competitive
performance. However, FedAvg-FT does not involve the constraints on the features, performing

curacy is given by where A,, denotes the number of test data on client n, and AS



Under review as a conference paper at ICLR 2025

worse than pFedVMP. (2) pFedVMP v.s. FedPer & FedRep & FedROD: The baselien meth-
ods, FedPer, FedRep and FedROD, train a base model to extract the features without regular-
izing the learned features to concentrate to global feature centroids. By adding this constraint,
pFedVMP outperforms FedPer/FedRep/FedROD by 11.38%/8.97%/8.13% on Cifar100 in Dir(0.1).

(3) pFedVMP v.s. FedProto & MOON & FedCP &
GPFL & FedPAC: These algorithms guide feature extraction
with global feature centroids. FedProto does not share the
local base model, causing the base model to suffer from
overfitting on the local data. As shown in Fig [2] although
GPFL shares the base model, the features of the same class
still diverge from the global feature centroid, resulting in
a poor performance. In FedPAC, the boundary of feature
samples from different classes are not distriminative from
each other due to the weighted average aggregation of the
feature centroids. By sharing the base model and aggregating
the distributions of global feature centroids, pFedVMP
outperforms  FedProto/MOON/FedCP/GPFL/FedPAC by
14.10%/3.05%17.85%/3.06%/2.69% on Cifar10 in Dir(0.3).
(4) pFedVMP v.s. FedPA-FT & FedEP-FT & QLSD-FT
& pFedGP & pFedBreD: These BFL methods update the
model parameters with Bayesian methods. FedPA, FedEP,
and QLSD formulate model training as Bayesian inference
tasks and aggregate the distributions of local parameters.
pFedGP trains personalized Gaussian process classifiers,
while pFedBreD injects the personalized prior of model
parameters in training. However, they do not leverage the
global feature centroids to guide local model training. In
constrast, pFedVMP achieves more precise estimates of the
distributions of global feature centroids and model parameters
by variational message passing.

—e—FedAvg —v—FedProto
—=—FedPer FedROD

GPFL  —<—Our pFedVMP
—A—FedPAC

0 200 400 600 800
Communication rounds

1000

0 200
Communication rounds

400 600 800

Figure 3: Upper: Test accuracy
of different pFL algorithms versus
communication rounds on Cifar10-
50c with Dir(0.1). Lower: Train-
ing loss of different pFL al-
gorithms versus communication
rounds under the same setting.

Table 1: Comparison of testing accuracy. The highest accuracy results (%, 1) are highlighted in
bold, while the second highest results are underlined. The values (mean) represent the mean of
values from three independent runs. “20c” means the number of clients N = 20.

| FMNIST-50c | EMNIST-50c |  Cifarl0-50c |  Cifar100-20c
Distribution | Dir(0.1) Dir(0.3) | Dir0.1)  Dir(0.3) | Dir(0.1) Dir(0.3) | Dir(0.1) Dir(0.3)
FedAvg-FT | 96.99 9493 | 95.95 9346 | 87.93  77.70 | 5941  50.79
FedPer 96.43  92.99 | 9466  90.51 | 85.05  70.56 | 52.94  39.74
FedRep 96.62  93.30 | 9460  90.48 | 8598  70.85 | 5535  41.38
FedROD | 96.68  94.38 | 95.54  92.66 | 86.35  74.61 | 56.19  46.42
FedProto | 96.06  92.19 | 93.38  90.30 | 83.05  66.71 | 43.77  36.68
MOON 96.57 9480 | 9593 9331 | 8788  77.76 | 5882  50.19
FedCP 96.87  93.87 | 9595 9281 | 86.97 7296 | 59.90  47.96
GPFL 96.65  95.09 | 96.71  94.82 | 8480  77.75 | 62.50  52.48
FedPAC 96.59  94.57 | 96.78  94.79 | 87.34  78.12 | 63.12  55.88
FedPA-FT | 96.91  94.97 | 96.36 9420 | 87.88  78.23 | 60.32 5167
FedEP-FT | 96.88  94.95 | 96.31  94.23 | 87.87 7836 |60.31 5192
QLSD-FT | 93.80  89.30 | 91.56  87.80 | 79.49 6535 | 37.44  27.74
pFedGP 96.11 9415 | 9477  91.02 | 8588  75.88 | 57.32  46.53
pFedBreD | 96.64  94.21 | 95.66  93.06 | 86.39  74.42 | 54.37  44.89
pFedVMP | 97.23  95.60 | 96.97 95.09 | 88.12 80.81 | 64.32  56.75

Ablation Study. We conduct an ablation study to further evaluate the efficacy of the feature cen-
troid aggregation proposed in pFedVMP. We compare pFedVMP with the following baselines: (1)
pFedVMP-avg, where the local feature centroids { /,Li’n} are aggregated at the PS using a weighted
average based on local dataset sizes; and (2) FedPer, where no regularization is applied to the feature
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Table 2: The test accuracy (%) of pFedVMP and its degrade versions on Cifar10-50c

| pFedVMP  pFedVMP-avg  FedPer

Dir(0.1) | 88.12 87.29 85.05
Dir(0.3) |  80.81 76.97 70.56

centroids. As shown in Table[2] both pFedVMP-avg and pFedVMP outperform FedPer significantly
due to the incorporation of constraints on the feature centroids. Moreover, pFedVMP improves the
average test accuracy over pFedVMP-avg by producing more discriminative feature representations
from different classes, demonstrating the effectiveness of aggregating the distributions of global
feature centroids in pFedVMP.

Table 3: The fairness, measured by the coefficient of variation (x 10’2, J), of test accuracy across
clients’ local datasets when achieving the best test accuracy on FMNIST, EMNIST, Cifar10 and
Cifar100 in Dir(0.3). The standard deviation (%, |) is presented in blankets.

Method \ FMNIST-50c EMNIST-50¢ Cifar10-50c Cifar100-20c

FedAvg-FT| 4.46(4.23) 2.80(2.62) 12.73( 9.89) 6.95(3.53)
FedPer 6.73(6.26)  3.16(2.86) 19.05(13.44) 6.47(2.57)
FedROD 4.794.52)  2.97(3.21) 15.99(11.93) 7.56(3.51)
FedProto 6.91(6.37) 3.26(2.94) 23.58(15.73) 10.05(3.67)
GPFL 4.26(4.06) 2.76(2.62) 13.84(10.76) 6.00(3.16)
FedPAC 5.15(4.87)  2.83(2.68) 14.07(10.99) 5.87(3.30)
pFedVMP | 4.14(3.96) 2.73(2.60) 11.81( 9.45) 5.84(3.33)

Fairness Analysis. We now analyze the fairness of the models obtained by pFedVMP. As discussed
in [Zhang et al.| (2023a)), |Li et al| (2021b), some clients may perform poorly in the pFL although
the average test accuracy is improving. Thus, the fairness of a pFL method is also an important
metric. Following|Li et al.[(2021b), we use the coefficient of variation to measure the fairness of the
pFL models, where a smaller coefficient of variation represents a more fair pFL model across the
clients. As shown in Table 3| our pFedVMP outperforms other pFL baselines by achieving a much
smaller coefficient of variation, especially on Cifar10 with 50 clients, demonstrating the superior
performance of pFedVMP.

6 CONCLUSIONS

In this paper, we introduced pFedVMP, a novel pFL approach designed to address the challenge
of statistical heterogeneity in FL. By leveraging variational message passing, pFedVMP effectively
aggregates the distributions of model parameters and feature centroids, enabling precise estimates
of their probabilistic models. Our method strikes a balance between incorporating global informa-
tion for collaborative learning and maintaining personalized models tailored to each client’s local
dataset. Moreover, pFedVMP effectively mitigates the risk of overfitting through the utilization of
global feature centroids to regularize local training. Numerical results demonstrate that pFedVMP
outperforms state-of-the-art algorithms in terms of test accuracy and the coefficient of variation.
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A DERIVATION THE LOSS FUNCTION IN EQUATIONE]

We now derive the loss function of SGD in eq. @) Based on the above definition of g, (6°,0% {z}),
the negative logarithm of the target distribution is expressed as:

—log c'jn(Hb,HE,{zk}) = —logp(8n|0b, 02) —log q({zx})—log q,n(0b) —log q,n({Hz}) + Const.

On client n, computing the cavity factors g_,,(6") and ¢_,,({6"}) may lead to instability during
sampling. Thus, we exclude the terms involving g_,,(8"), ¢_,,({6"}), resulting in the following
simplified loss function:

—log p(S,|6", 0y,) — log q({z1.})

By assuming the data samples are i.i.d., we obtain eq. (9):

Sn 16 on -
Z _logp(xn,'myn,z|0 70n)+€1||zn,z_uy,m

i=1

), (14)

where the second term is because calculating the precision matrix A7 in the loss function may
cause the gradient unstable, and we use a spherical Gaussian distribution with the mean pj . and
the precision matrix &;1 instead.

B DETAILS OF EXPERIMENTAL SETUP

Hardware Information. We implement all the FL baselines and the proposed pFedVMP algorithm
with PyTorch and simulate them with NVIDIA GeForce RTX 2080Ti GPUs.

Dataset. We use the FMNIST (Xiao et al., 2017), EMNIST-balanced (Cohen et al.l [2017)), and
CIFAR-10/CIFAR-100 (Krizhevsky et al., |2009) datasets in our experiments. For each dataset,
we uniformly sample from the entire dataset to construct a new subset. Specifically, the retained
proportions are 25% for FMNIST-50¢-Dir(0.3) and CIFAR-10-50c-Dir(0.3), 50% for FMNIST-50c-
Dir(0.1) and CIFAR-10-20¢-Dir(0.1), and 100% for EMNIST-50¢-Dir(0.1), EMNIST-50c-Dir(0.3),
CIFAR-100-20c-Dir(0.1), and CIFAR-100-20c-Dir(0.3).

Data Heterogeneity Setting. Following prior work in pFL (Lin et al., 2020; Zhang et al., 2023a),
we generate local datasets for clients based on a Dirichlet distribution. Specifically, let g, =

Zk.n
Sk

[qk,1;- - - qx,n] denote the proportion values for class & across all clients, where ZnN:1 Qi = 1.
For each class k, the entries of qj, are sampled from a Dirichlet distribution, denoted by Dir(/3),
where [ is the distribution parameter. A smaller [ results in a higher concentration of data from
the same class within a few clients. The data distribution is visualized in Fig[d] As shown in Fig{]
data for each class are more concentrated among a few clients when Dir(0.1) is used compared to
Dir(0.3). In contrast, in the case of Dir(0.3), each client contains a greater variety of data categories
than in the case of Dir(0.1).

represent the proportion of data samples from class k allocated to client n, and let q;, =

Network Architecture. We present the architecture of the CNN used in our experiments in Table[d]
Some parameters of the network, including data_channels, dim, and class_num, vary across
datasets and are listed in Table ]
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Table 4: The architecture of the CNN used in the experiments.

Layer type | Layer details
Conv2d in_channels=data_channels, out_channels=32, kernel_size=5, stride=1, padding=0
LeakyReLLU negative_slope=0.1, inplace=True
MaxPool2d kernel_size=2x2
Conv2d in_channels=32, out_channels=64, kernel _size=5, stride=1, padding=0
LeakyReLLU negative_slope=0.1, inplace=True
MaxPool2d kernel_size=2x2
Flatten -
Linear in_features=d im, out_features=512
LeakyReLU negative_slope=0.1, inplace=True
Linear in_features=512, out_features=class_num
Dataset \ Parameters details
FMNIST data_channels=1,dim=1024, class_num= 10
EMNIST data_channels=1,dim=1024, class_num =47
CIFAR10 data_channels =3,dim=1600, class_num= 10
CIFAR100 data_channels =3,dim=1600, class_num= 100
C ADDITIONAL EXPERIMENTAL RESULTS

C.1

RESULTS IN PATHOLOGICAL NON-I.I.D. DATA SCENARIO

To evaluate various non-i.i.d. data scenarios, we follow [Shamsian et al.[(2021)); Zhang et al.|(2023a);

Xu et al.| (202
local datasets

3)) and present results on the pathological non-i.i.d. data distribution. In this scenario,
are small, and FL models are at high risk of overfitting. Specifically, using Cifar10

as a benchmark, we select 3 different classes for each client and randomly sample 100 instances
from each class. The number of clients is set to 50. We compare pFedVMP with the other base-
line methods under the pathological non-i.i.d. data distribution and report the test accuracy of the
methods in Table[5] As shown in Table [5] pFedVMP still achieves the best average test accuracy
than other pFL baselines thanks to its more precise estimation of global feature centroids and model
parameters based on message passing, which demonstrates the superb performance of pFedVMP in

the scenario o

f pathological non-i.i.d. data.

Table 5: The test accuracy (%, 1) under pathological Non-i.i.d. data distributions on Cifar10.

Methods

| FedAvg-FT FedPer FedROD FedProto GPFL FedPAC pFedVMP

Test accuracy | 83.47

74.80  79.07 71.83 82.63 81.17 84.73

C.2 EFFECT OF FEATURE DIMENSIONS

In representation learning, the dimensionality of the feature space is an important hyperparameter,
closely related to model capacity and overfitting risk (Goodfellow et al.| [2016; |Alain) [2016). Due
to the essential role of global feature centroids, we investigate the effect of feature dimensions on
pFedVMP here, denoted by dim as shown in Appendix [B] We report the test accuracy of pFedVMP
across different feature dimensions on Cifar10 and Cifar100 datasets in Table[6] As shown in Table[6}
the best test accuracy is at 256 for Cifar10 and 640 for Cifar100. The explanations are given as
follows. Increasing feature dimensions enhances model capacity, thereby improving the learning
performance of FL. models. However, it also raises the number of trainable parameters, which
increases the risk of overfitting. In the FL context, where some clients have small local datasets, this

risk is mitigat

ed.

16



Under review as a conference paper at ICLR 2025

Table 6: The test accuracy (%, 1) of pFedVMP under different feature dimensions.

| 128 256 384 512 640

79.46 80.14 80.10 79.93 79.82
52.04 5533 56.79 56.81 57.19

Cifar10-50c-Dir0.3
Cifar100-20c-Dir0.3

C.3 EFFECT OF PENALTY SCALAR &;

In this subsection, we investigate the effect of the penalty scalar £; on the learning performance of
pFedVMP. We evaluated a range of &; values on the scenario of Cifar10-50c Dir(0.3) and present
the average test accuracy in Table[/| Table|/|shows the varying learning performance of pFedVMP
under different values of &; in eq. . The best value of &; is 50 in this scenario. With the increasing
of &1, the average test accuracy improves first from £&; = 1 to & = 50 but declines as &; rises to
100. This behavior arises because a smaller £; weakens the regularization term on local updates,
increasing the possibility of local models overfitting the data. Conversely, a larger &; restricts the
model’s ablity to explore, resulting in a suboptimal performance.

Table 7: The test accuracy (%, 1) of pFedVMP under different values of penalty scalar ;.

& | 1 5 10 20 50 70 100
Test accuracy | 75.15 78.66 7922 80.08 80.81 80.25 79.43
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